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The subgrid-scale �SGS� modeling of helical, isotropic turbulence in large eddy simulation is investigated by
quantifying rates of helicity and energy cascade. Assuming Kolmogorov spectra, the Smagorinsky model with
its traditional coefficient is shown to underestimate the helicity dissipation rate by about 40%. Several two-
term helical models are proposed with the model coefficients calculated from simultaneous energy and helicity
dissipation balance. The helical models are also extended to include dynamic determination of their coeffi-
cients. The models are tested a priori in isotropic steady helical turbulence. Together with the dynamic
Smagorinsky model and the dynamic mixed model, they are also tested a posteriori in both decaying and
steady isotropic helical turbulence by comparing results to direct numerical simulations �DNS�. The a priori
tests confirm that the Smagorinsky model underestimates SGS helicity dissipation, although quantitative dif-
ferences with the predictions are observed due to the finite Reynolds number of the DNS. Also, in a posteriori
tests improvement can be achieved for the helicity decay rate with the proposed models, compared with the
Smagorinsky model. Overall, however, the effect of the new helical terms added to obtain the correct rate of
global helicity dissipation is found to be quite small. Within the small differences, the various versions of the
dynamic model provide the results closest to the DNS. The dynamic model’s good performance in capturing
mean kinetic energy dissipation at the finite Reynolds number of the simulations appears to be the most
important aspect in accounting also for accurate prediction of the helicity dissipation.
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I. INTRODUCTION

In turbulent flows, the importance of helicity, h=u ·�
�where u and � are the velocity and vorticity fields, respec-
tively�, originates from the facts that it is an inviscid invari-
ant and it is related to the linkage of the vortex lines of the
flow �1�. Many conjectures about the consequences of these
two properties have been proposed. For example, it was con-
jectured that in helical turbulence with constant helicity in-
jection, helicity would cascade from the injection scale to
smaller scales �2�. Two possible pictures were proposed
based on different assumptions: either the helicity cascade
totally blocks the energy cascade, reminiscent of the dual
energy and enstrophy cascades in two-dimensional turbu-
lence, or it cascades linearly with energy like a passive sca-
lar. These ideas were further analyzed and the latter picture
was observed in the eddy-damped quasi-normal Markovian
�EDQNM� model calculation �3� and direct numerical simu-
lation �DNS� �4,5�, while it was suggested �3,4,6� that the
former picture was unlikely to be observed. It was also
speculated that the invariance and topological nature of he-
licity would increase the probability of the flow being locally
Beltramized and that regions with high relative helicity
should be correlated with low energy dissipation rate and
vice versa �7,8�. This speculation was supported by the DNS
conducted by Pelz et al. �9� in plane Poiseuille and Taylor-
Green vortex flows, but the DNS in homogeneous flows and
channel flows with higher resolution �10,11� and experiments
in several shear flows �12� found no obvious correlation be-
tween helicity distribution and energy dissipation, and no
general tendency of Beltramization. The observation that he-
licity is related to the nonlinear term of the Navier-Stokes
�NS� equation by the vector identity

�u · ��2 + �u � ��2 = �u�2���2 �1�

inspired another idea that persistence of nonzero mean helic-
ity would suppress the energy cascade and thus reduce en-
ergy dissipation �9�, which also served as another support for
the conjecture that regions with high relative helicity would
coincide with regions of low dissipation rate and vice versa.
The DNS of Polifke and Shtilman �13� confirmed that in
homogeneous turbulent flows with strong initial helicity the
rate of energy cascade was suppressed. The same trend was
obtained in the DNS of thermal convection between two
plates with different types of mean shear �14�. On the other
hand Speziale �15� pointed out that only the solenoidal part
of the Lamb vector contributed to the energy cascade, there-
fore low helicity levels would not necessarily imply high
energy cascade or high energy dissipation.

In terms of applications, it has long been recognized that
the spectral distribution of helicity is related to the � effect
observed in magnetohydrodynamics �1�. It was first noted by
Lilly �16� that supercell thunderstorms were characterized by
high helicity. A simple Beltrami flow model was proposed
for the supercell storm and it was argued that the noted sta-
bility of a supercell storm could be attributed to the fact that
helicity suppresses energy dissipation. The effect of buoyant
forcing on helicity generation was also investigated �14� and
it was found that buoyant forcing tended to amplify the he-
licity fluctuations when the mean flow field was helical.

Considering the possible effects of helicity on the energy
cascade and on turbulence structure, it is of interest to ex-
plore the effects of helicity on subgrid-scale �SGS� structure
and SGS modeling in the context of large-eddy simulation
�LES�. Specifically, we present in this paper an analysis of
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SGS modeling of helical turbulence and helicity dissipation.
LES of helical turbulence was previously treated by Lauten-
schlager et al. �17�, but no particular emphasis was placed on
the SGS modeling of helicity dissipation. Here, by exploiting
the methodology pioneered by Lilly �18�, we first quantify
the SGS helicity dissipation rate of the traditional Smagorin-
sky model, showing that the Smagorinsky model will tend to
underpredict helicity dissipation rates under canonical condi-
tions. SGS models are then proposed and model coefficients
are determined by simultaneous energy and helicity dissipa-
tion balance, or using the dynamic approach based on mul-
tiscale filterings �19�. The models, as well as the dynamic
Smagorinsky model and the dynamic two-coefficient nonlin-
ear model, are tested a priori and/or a posteriori in isotropic
turbulence, and conclusions are presented.

II. THEORETICAL ANALYSIS

A. SGS helicity dissipation rate produced
by the Smagorinsky model

From the NS equation one can derive the equation for the
ensemble averaged helicity �h���u ·��,

�t�h� + � j�ujh� = � j�Qj� − 4��Sij��Rij� − � + 2�f i�i� , �2�

in which Sij is the strain rate tensor and Rij is the symmetric
vorticity gradient tensor defined as Rij �

1
2 �� j�i+�i� j�. �

�4��Sij�Rij� � is the helicity dissipation rate with Sij� �Sij

− �Sij�, Rij� �Rij − �Rij�. f i is the forcing term in the NS equa-
tion, while Qj is the flux term:

Qj � −
p

�
� j +

1

2
uiui� j + 2�uiRij + 2��iSij − � jkmukfm.

�3�

In LES, one defines the resolved helicity as h�� ũ ·�̃, with
the wide tilde denoting filtered quantity at scale �. The equa-
tion for h� can be derived from the filtered NS equation as

�th� + � j�ũjh�� = � jQ̃j − 	H − 4�S̃ijR̃ij + 2 f̃ i�̃i, �4�

where 	H�−2
ijR̃ij on the right-hand side �rhs� is the SGS

helicity dissipation rate, with 
ij �uiuj
˜ − ũiũj being the SGS

stress, and

Q̃j � − 2�̃i
ij − �ijkũi�l
kl − �̃ j
p̃

�
+ �̃ j

ũiũi

2
+ 2�R̃ijũi + 2�S̃ij�̃i

− � jkmũk f̃m �5�

is the spatial flux term.
In helical isotropic turbulence, the spectral energy density

tensor can be written as �4,20–22�

�ij�k,t� � �ûi
*�k,t�ûj�k,t��

=
E�k,t�
4�k2 	
ij −

kikj

k2 
 + ��ijl
kl

k2

H�k,t�
8�k2 , �6�

in which �=�−1 and E�k� and H�k� are the �radial� energy
and helicity spectra �for simplicity, the dependence on time
has been omitted�. In the inertial range

E�k� = cK�2/3k−5/3. �7�

As proposed by Brissaud et al. �2� and confirmed by both the
DNS with hyperviscosity �4� and with normal viscosity �5�,
in helical turbulence where there is constant helicity injec-
tion, the injected helicity will cascade to small scales where
it is dissipated. This process yields, in the inertial range, a
helicity spectrum of the form

H�k� = cH��−1/3k−5/3, �8�

where the coefficient cH was found to be approximately 1.0
�4�. Therefore in LES of helical turbulence where helicity
plays an important role, one is interested in capturing accu-
rately the SGS helicity dissipation, in addition to SGS energy
dissipation which must be captured accurately in both helical
and nonhelical turbulence.

Useful insight into this problem can be obtained by con-
sidering the ensemble averaged balance equation for the re-
solved helicity h�, generalizing the method first applied by
Lilly �18� to calculate the Smagorinsky coefficient. Consider
homogeneous steady turbulence. Taking the ensemble aver-
age of Eq. �4� we obtain

− 2�
ijR̃ij� + 4��S̃ijR̃ij� = 2� f̃ i�̃i� . �9�

Comparing this equation with Eq. �2�, which in homoge-
neous steady turbulence reduces to the balance between he-
licity dissipation and helicity injection rate �=2�f i�i�, and
assuming that the filter size � is well inside the inertial range
where the effects of viscosity and forcing are negligible, we
obtain the equilibrium between the helicity injection �or vis-
cous helicity dissipation� and SGS dissipation of resolved
helicity:

� = − 2�
ijR̃ij� � �	H� , �10�

which is analogous to the energy balance equation used by
Lilly �18�:

� = − �
ijS̃ij� = �	E� , �11�

where 	E�−
ijS̃ij is the SGS energy dissipation rate.
As is well-known �18�, from the energy balance relation

Eq. �11�, one obtains the Smagorinsky coefficient cs

=�1
−1/2� 3

2cK�−3/4 /� �a cutoff filter is implied throughout this
paper�, where

�1 �
��S̃ijS̃ij�3/2�

�S̃ijS̃ij�3/2
�12�

is a moment correction factor, which is approximately a con-
stant of order one in the inertial range. Now, given helicity
balance relation Eq. �10�, one can apply it to investigate the
SGS helicity dissipation rate produced by the Smagorinsky
model. Replacing the SGS stress in Eq. �10� with Smagorin-

sky model 
ij =−2cs
2�2�S̃�S̃ij, where �S̃���2S̃ijS̃ij�1/2, we ob-

tain

� = 4�2cs
2�2��S̃mnS̃mn�1/2S̃ijR̃ij� . �13�

Introducing another moment correction factor
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�2 �
��S̃ijS̃ij�1/2S̃mnR̃mn�

�S̃ijS̃ij�1/2�S̃mnR̃mn�
, �14�

the above equation can be written as

� = 4�2cs
2�2�2�S̃ijS̃ij�1/2�S̃mnR̃mn� . �15�

Evaluating the second order moments by integrating the
spectral tensor �Eq. �6��, we find after some algebra the ex-
pression for cs, denoted cs

H here, to be

cs
H = �3

4
�6�2cHcK

1/2�2
−1/2

. �16�

cs
H depends on cH as well as cK, while cs depends only on cK.

Evaluating the expressions by putting �1=�2=1, cH=1.0 and
cK=1.6 yields cs�0.17 while cs

H�0.21. Therefore we reach
the important conclusion that the traditional Smagorinsky
model underestimates the ensemble averaged helicity dissi-
pation rate by a factor of �0.17/0.21�2�0.63. The Smagor-
insky model is thus unable to correctly dissipate both energy
and helicity simultaneously, assuming the “correct” statistics

of S̃ij and R̃ij as implied by the spectra equations �6�–�8�.
One could then expect that when the Smagorinsky model is
applied to the LES of helical turbulence with cs=0.17, either
the helicity is not dissipated enough or the resolved velocity

field adjusts the S̃ij and R̃ij statistics away from what is im-
plied from Eqs. �6�–�8�, or both. Given the importance of the
distribution of helicity in many helical flows as discussed
previously, it is desirable to design a model that can dissipate
both kinetic energy and helicity correctly, at least on average.

Note that the above conclusion does not change when we
replace �1 and �2 with DNS values, since they are nearly
equal in the inertial range. As will be shown later, in the
inertial range �1�1.23 while �2�1.25, so that if these val-
ues are used we get cs�0.15 and cs

H�0.19, but the ratio is
nearly unchanged.

It can also be seen that the value of cH directly affects that
of cs

H, so the value of cH will be confirmed again with DNS
data later.

B. Helical SGS models

In view of the definition of the SGS helicity dissipation
rate �see Eq. �4��, one has to control the correlation between

the model for 
ij and R̃ij in order to specify the SGS helicity
dissipation rate. Therefore a two-term helical SGS model is
proposed in the following form:


ij = − 2C1�2�S̃�S̃ij − C2�3�S̃�R̃ij . �17�

The two balance conditions between injection and SGS dis-
sipation of resolved energy and helicity are used to deter-
mine the two model coefficients. The same idea has previ-
ously been applied to the joint balance of energy and
enstrophy �23� and of energy and mean SGS stress �24�.
Substituting the expression of 
ij �Eq. �17�� into Eqs. �11�
and �10�, one can write

� = 2C1�2��S̃�S̃ijS̃ij� + C2�3��S̃�R̃ijS̃ij� , �18�

� = 4C1�2��S̃�S̃ijR̃ij� + 2C2�3��S̃�R̃ijR̃ij� . �19�

Defining another moment correction factor

�3 �
��S̃mnS̃mn�1/2R̃ijR̃ij�

�S̃mnS̃mn�1/2�R̃ijR̃ij�
, �20�

the correlations in the equations can be expressed in terms of
second order ones and thus can be evaluated by integrating
the spectral energy density tensor. After some algebra, the
equations are simplified to

1 = �3�6

4
�1cK

3/2�2
C1 + �3�6

16
�2cK

1/2cH�2
�*C2,

�* = �3�6

4
�2cK

1/2cH�2
�*C1 + �3�6

10
�3cK

3/2�4
C2,

�21�

in which �*��� /� is the nondimensional helicity injection
rate. Solving the equations gives C1 and C2 as functions of
�*:

C1 =
�	3

2
cK
3/2

�1�2
−1�1 −
5

8
�2�3

−1cK
−1cH�−2�*2


1 −
5

8
�2

2�1
−1�3

−1cH
2 cK

−2�−2�*2

,

�22�

C2 =
�5�6��1cK − �2cH���*

9�1�3cK
5/2�4�1 −

5

8
�2

2�1
−1�3

−1cH
2 cK

−2�−2�*2
 . �23�

Notice that since R̃ij is a pseudotensor and, as an odd func-
tion of the pseudoscalar �*, C2 is also a pseudoscalar, the
second term in the model expression Eq. �17� as a whole is a
true tensor, having the same parity symmetry as the real SGS
stress. For the particular case of nonhelical turbulence where
�*=0, C2 becomes zero while C1 reduces consistently to the
expression obtained from energy dissipation balance, so that
the traditional Smagorinsky model is recovered.

To clearly see the dependence of C1 and C2 on �*, Eqs.
�22� and �23� are plotted in Fig. 1, with cK=1.6, cH=1.0, and
the �’s are all set to be one. Also plotted are linear approxi-
mations, obtained as Taylor-series expansions around �*=0:

C1 = ��3cK/2�3/2�1�2�−1 � 0.027, �24�

C2 =
5�6��1cK − �2cH�

9�1�3cK
5/2�4 �* � 0.0026�*. �25�

We can see that the magnitude of C1 decreases with increas-
ing ��*� while C2 increases with �*, but the dependence on
�* does not depart much away from the linear approximation
in the neighborhood of the origin. Recalling that the helicity
and energy injection rates are related by the inequality ���
�2kf� for positive energy injection rate, where kf is the
maximal forcing wave number, one can estimate ��*�
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�2kf��2�� / l for the common cases in which the helicity
is injected at the integral scale l of the flow field. Therefore,
consistent with the assumptions already made, � / l and thus
�* are presumably much smaller than one, so that one can
safely replace the coefficients with the linear approxima-
tions.

With the linearized coefficients, the energy balance equa-
tion is then not satisfied exactly. Substituting C1 and C2 in
the rhs of the first equation in Eq. �21� with the linearized
solutions Eqs. �24� and �25�, the rhs of the equation becomes

1 +
5�2cH��1cK − �2cH�

8�1�3�2cK
2 �*2 � 1 + 0.01�*2. �26�

Therefore the relative error in satisfying the energy balance
is about 0.01�*2, which for small �* is negligible. On the
other hand, substitution of C1 and C2 in the rhs of the second
equation in Eq. �21� with the linearized coefficients shows
that the helicity balance equation is satisfied exactly. Thus
the linearization does not introduce error in the helicity bal-
ance equation.

The model obtained as such is a nonlocal one, in the sense
that C2 depends on �*, which is an ensemble averaged quan-
tity and cannot be calculated from the local flow field. Thus
in its present form the model cannot be applied in cases in
which the mean helicity and energy injection rates are not
known a priori.

In order to obtain a model that is useable in practice, �*

has to be evaluated with some quantity that can be calculated
locally. After several trials, we choose to model �* as

S̃ijR̃ij / ��S̃��R̃��, in which �R̃���2R̃ijR̃ij�1/2. The first advantage
of this expression is that, thanks to Schwartz inequality, it
shares the same boundedness property with �*. As a conse-
quence, it has improved chances of robustness in numerical
simulation. Second, the helicity dissipation rate is defined as
��4��Sij�Rij� �. By replacing the two tensors in this definition
with corresponding filtered ones, the model expression loses
the correspondence in magnitude, but arguably some of the
geometric properties �for example, the relative orientation

between the tensors� are partially retained. Finally this ex-
pression is simple, so that it is possible to determine the
coefficients of the model by the same method applied above.
Another estimation for �* that was explored is as follows:

� = − 2�
ijR̃ij� � − 2�LijR̃ij� � − LijR̃ij , �27�

and ��−LijS̃ij, where Lij � ũiũj
˜ −u5 iu5 j is the Leonard stress,

so that

�* �
�LijR̃ij

LmnS̃mn

. �28�

While this estimate falls closer to the energy and helicity
dissipation, it does not possess the above-mentioned desir-
able properties �e.g., it is unbounded since the denominator
can vanish� and is thus not pursued further.

Replacing the �* in the expression for C2 �Eq. �25�� with
the model expression, one arrives at a local formulation for
the helical model


ij = − 2C1�2�S̃�S̃ij − ��3 R̃mnS̃mn

�R̃�
R̃ij , �29�

in which C1 and � are model coefficients. Since the model
formulation has been changed, the coefficients have to be
adjusted to satisfy the energy and helicity dissipation balance
conditions. The coefficients can be found by repeating the
previous calculation for the nonlocal model. For the sake of
completeness, we list the resulting energy and helicity bal-
ance relations:

� = 2C1�2��S̃�S̃ijS̃ij� + ��3��R̃�−1�R̃ijS̃ij�2� , �30�

� = 4C1�2��S̃�S̃ijR̃ij� + 2��3��R̃�−1R̃mnS̃mnR̃ijR̃ij� , �31�

and the simplified dimensionless versions obtained from
Kolmogorov spectra:

1 = �3�6

4
�1�2cK

3/2
C1 + �3�15

64
�4�cK

−1/2cH
2
�*2� ,

�32�

1 = �3�6

4
�2�2cK

1/2cH
C1 + �3�15

40
�5�3cK

1/2cH
� ,

in which

�4 �
��R̃ijS̃ij�2�R̃mnR̃mn�−1/2�

�R̃ijS̃ij�2�R̃mnR̃mn�−1/2
, �33�

�5 �
��R̃ijS̃ij��R̃mnR̃mn�1/2�

�R̃ijS̃ij��R̃mnR̃mn�1/2
. �34�

From the above equations, C1 and � are found to be

FIG. 1. C1 and C2 and their linearization as functions of �*.
Solid lines: complete formulas �Eqs. �22� and �23��; and dashed
lines: linearization �Eqs. �24� and �25��.
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C1 =
�	3

2
cK
3/2

�2�1
−1�1 −
5

8
�4�5

−1�−2cHcK
−1�*2


1 −
5

8
�2�4�1

−1�5
−1�−2cK

−2cH
2 �*2

,

�35�

� =
8�15��1cK − �2cH��−3�1

−1�5
−1cK

−3/2cH
−1

9�1 −
5

8
�2�4�1

−1�5
−1�−2cK

−2cH
2 �*2
 . �36�

The linear approximations of C1 and � are easily seen to be
constants

C1 = ��3cK/2�3/2�2�1�−1, �37�

� =
8

9
�15��1cK − �2cH��−3�1

−1�5
−1cK

−3/2cH
−1, �38�

which assume the values

C1 = 0.027, � = 0.033 �39�

if all the �’s are set to one and cK=1.6 and cH=1.0.
The coefficients, along with the linear approximations, are

plotted in Fig. 2 as functions of �*. As before, we can use the
linear approximation as the model coefficients, and thus ob-
tain a local model whose coefficients are constants. As in the
case of the nonlocal model, the helicity balance equation is
exactly satisfied by the linearized coefficients, which can be
shown by simple substitution. On the other hand, the error in
satisfying energy balance can not be analytically determined
because DNS data shows that �4 varies much more than the
other correction factors in the inertial range, therefore the
estimation assuming �4=1 does not give the correct answer.
Note that �4 does not affect the values of the linearized co-
efficients, although it affects the range in which the linear
approximation is accurate. Later we will check the accuracy
of the linear approximation by analyzing the DNS data.

C. Dynamic models

In most applications, calculating the model coefficients by
the dynamic procedure �19� and its variants has improved the
model performance. Therefore, in this section, the dynamic
versions of the nonlocal helical model are derived.

We start from the Germano identity �19�:

Lij = Tij − 
̂ij �40�

where the wide hat denotes test-filtering; Tij is the SGS stress
defined at test filter scale, and Lij is the Leonard stress: Lij

� ũiũ ĵ − û̃iû̃ j. 
ij is modeled by Eq. �17�. The same applies to
Tij, only with the filter being replaced by the test filter. In this

section �̃ �instead of �� denotes the filter size, while the

scale of test filter is denoted as �̃
ˆ

:

Tij = − 2C1�̃
ˆ 2�S̃ˆ �S̃ˆ ij − C2�̃

ˆ 3�S̃ˆ �R̃ˆ ij . �41�

Therefore we have assumed that the coefficients are scale-
invariant �25�. Substituting 
ij and Tij into the Germano iden-
tity, we obtain

Lij = C1Mij + C2Pij , �42�

where

Mij = 2�̃2�S̃�S̃ij
ˆ

− 2�̃
ˆ 2�S̃ˆ �S̃ˆ ij , �43�

Pij = �̃3�S̃�R̃ij
ˆ

− �̃
ˆ 3�S̃ˆ �R̃ˆ ij . �44�

By minimizing the mean-squared error ��Lij −C1Mij

−C2Pij�2�v in satisfying Eq. �42�, where �·�v denotes volume-
averaging over the whole flow field, the coefficients are
found to be

C1 =
�LijMij�v�PlkPlk�v − �LijPij�v�PlkMlk�v

�MijMij�v�PlkPlk�v − �PijMij�v
2 , �45�

C2 =
�LijPij�v�MlkMlk�v − �LijMij�v�PlkMlk�v

�MijMij�v�PlkPlk�v − �PijMij�v
2 . �46�

As mentioned in Sec. I, flows characterized with strong
helicity are often found in the large-scale structure of the
atmosphere, in which the Coriolis force also plays an impor-
tant role. Therefore it is often of interest to formulate the
model in a rotating frame. In the modeling of rotating turbu-
lence, the property of material frame difference or indiffer-
ence should be taken into account �26�. As was already es-
tablished in the literature, the SGS stress is not material
frame indifferent. Specifically, the stress 
ij in an inertial
frame and that in a rotating frame 
ij

r are related by �27�

QilQjk
lk = 
ij
r + Zij

r , �47�

in which the superscript r denotes quantities in the rotating
frame; Qij is a time-dependent rotation matrix transforming
the coordinates in the inertial frame into the rotating frame;
and Zij

r is given as �27�

FIG. 2. C1 and � and their linearization as functions of �*. Solid
lines: complete formulas �Eqs. �35� and �36��, and dashed lines:
linearization �Eqs. �37� and �38��.
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Zij
r = �ilk�l

r�xk
ruj

r̃ − xk
rũj

r� + � jmn�m
r �xn

rui
r̃ − xn

r ũi
r�

+ �ilk� jmn�l
r�m

r �xk
rxn

r̃ − xk
rxn

r� . �48�

Similarly the Leonard stress is also material frame different.
However, the usual models including the Smagorinsky
model and the present helical model �Eq. �17�� are material
frame indifferent. Therefore if we insist that the Germano
identity applied in the rotating frame should be derived from
the inertial frame by the time-dependent rotation, the mate-
rial frame indifferent models should satisfy

Lij
r + Zij

rt = Tij
r − 
̂ij

r , �49�

where Zij
rt is defined in the same way as Zij

r but for resolved
velocity field and with the filter replaced by the test filter.
The presence of Zij

rt will lead to unphysical oscillation in the
dynamically determined coefficients �28� in some cases. One
way to remedy this problem is to develop model expressions
that observe the same rules of transformation as the true SGS
stress as given by Eq. �47� so that the same form of the
Germano identity is satisfied in both the inertial and rotating
frame by the models; but, based on the present material
frame indifferent model expressions, we can also circumvent
the problem by applying the Germano identity in the form of
SGS force:

� jLij = � jTij − � j
̂ij . �50�

Given that Zij
rt is divergence-free for a spherically symmetric

filter �27�, Eq. �50� is material frame indifferent and there-
fore it is directly applicable in a rotating frame. The dynamic
coefficients derived from Eq. �50� will be material frame
indifferent and are expected to be well-behaved in different
frames of reference.

We now calculate the coefficients for the nonlocal model
by using Eq. �50�. Following the same procedure it is easy to
find that

C1 =
�PiPi�v�Mj�kLjk�v − �PiMi�v�Pj�kLjk�v

�PiPi�v�MjMj�v − �PiMi�v
2 , �51�

C2 =
�MiMi�v�Pj�kLjk�v − �PiMi�v�Mj�kLjk�v

�PiPi�v�MjMj�v − �PiMi�v
2 , �52�

where

Mi = 2�̃2� j��S̃�S̃ij
ˆ� − �̃

ˆ 2� j��S̃
ˆ �S̃ˆ ij� , �53�

Pi = �̃3� j��S̃�R̃ij
ˆ� − �̃

ˆ 3� j��S̃
ˆ �R̃ˆ ij� . �54�

In what follows, the first dynamic model �Eqs. �45� and
�46�� is called Dyn-A while the second one �Eqs. �51� and

�52�� is called Dyn-B. The test filter �̃
ˆ

is taken to be 2�̃
�2�.

III. NUMERICAL TESTS OF THE HELICAL MODELS

A. A priori tests in isotropic turbulence

In this section, the model performance and the assump-
tions involved in the above analysis are validated a priori.
The data are obtained from a 5123 DNS of an isotropic
steady turbulent flow with constant energy and helicity injec-
tion rate, �=0.1 and �=0.5, respectively. The Taylor-scale
Reynolds number is about 220.

Figure 3 shows the energy and helicity spectra calculated
from the DNS data set and the ones predicted from Kolmog-
orov phenomenology �Eqs. �7� and �8�� with cK=1.6 and
cH=1.0. For this resolution, the spectra display only narrow
inertial ranges. The helicity spectrum shows that the coeffi-
cient cH seems to be around 1.0, confirming the value found
previously in the DNS of the NS equation with hyperviscos-
ity �4�.

Figure 4 shows the dependence of �1–�5 on filter scale �.

FIG. 3. Energy and helicity spectra. Solid line: energy spectrum;
dashed line: helicity spectrum; and dotted line: −5/3 law. Lower
dotted line: cK�2/3k−5/3 with cK=1.6 and �=0.1; and upper dotted
line: cH��−1/3k−5/3 with cH=1.0, �=0.1, and �=0.5.

FIG. 4. Dependence of the �’s on filter size �. The line patterns
from �1 to �5 are, respectively, solid line, dashed, dotted, long
dashed, and dash-dot-dotted. lk���3 /��1/4 is the Kolmogorov
length scale.
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Except �4, all the other four coefficients are almost constant
and close to one in the inertial range, although the values
increase when the filter size approaches the Kolmogorov
scale. The constant values for the coefficients are, respec-
tively, �1�1.19, �2�1.20, �3�1.01, and �5�1.20 �aver-
aged from � / lk�20 to around 170�. On the other hand, �4
depends quite strongly on the filter size, although it too ap-
pears to tend to values O�1� for � / lk�1. As mentioned be-
fore, this trend renders it difficult to estimate analytically the
relative error introduced by the linearization into the SGS
energy dissipation calculated from the local model. Next we
will check the error numerically by calculating the SGS en-
ergy dissipation produced by the models from DNS data.

The mean SGS energy dissipation �	E� and helicity dis-
sipation �	H� calculated a priori from the Smagorinsky
model and the pair of helical models are compared with DNS
data for different filter scale in Figs. 5 and 6. Note that the
present model derivations are valid only in the inertial range.
It is well-known that in the viscous range molecular dissipa-
tion affects the model coefficients, but this has not been in-
cluded in our analysis. As a consequence, the model dissipa-
tions are significantly overpredicted in the viscous range at
� / lk�50. For more discussions on the transition to the vis-
cous range, see �29�. Moreover, since we have set �1=1 in
determining the theoretical value of the coefficients �whereas
the real value of �1 may be 10%–20% higher, see Fig. 4�, the
model dissipation using the theoretical coefficient value is
expected to be overpredicted even in the inertial range. In-
deed the Smagorinsky model overestimates the SGS energy
dissipation by about 20%, as is clear from Fig. 5. On the
other hand, the SGS energy dissipation rates predicted by the
helical models are only higher than that of Smagorinsky in
the inertial range by small amounts. This overestimate is for
the most part caused by the error in the model coefficients
introduced by the linearization. As has already been proven
analytically, the overestimate by the nonlocal model due to
the linearization is approximately 0.01�*2, and thus de-

creases with filter size � for fixed � and �. This trend is
consistently observed in Fig. 5. The prediction of the local
helical model is about 20% higher than that of the Smagor-
insky model in the lower end of the inertial range, and the
relative error decreases with the filter size, however, with a
rate slower than for the nonlocal model. Therefore the rela-
tive error in the SGS energy dissipation calculated a priori
by the local helical model is at an acceptable level, and
shows simple dependence on the filter size. Assuming �4
=1 does not have significant adverse effect, even though �4
shows relative strong dependence on filter size. The increase
of �	E� predicted by the models seen at large filter scales
�� / lk�100� is due to the effects of the forcing term which

directly increases the variances of S̃ij and R̃ij at those scales.
As will be seen in Fig. 6, a similar increase in �	H� predicted
from the models is also observed for the same reason.

Figure 6 shows the SGS helicity dissipation rates pre-
dicted by the various models. In order to quantitatively
verify the theoretical result, we calculate the SGS helicity
dissipation rates predicted by the models with DNS values of
the �’s, which are plotted with dashed lines in Fig. 6. It can
be seen in the figure that the SGS helicity dissipation rate
calculated from the Smagorinsky model is lower than the
DNS value by about 30%, close to the theoretical result. It
confirms that the Smagorinsky model is unable to correctly
predict the SGS helicity and energy dissipation simulta-
neously. The SGS helicity dissipation predicted by the heli-
cal models is closer, and reaches a value of about 0.5 in the
higher wave-number end of the inertial range. Notice that
when the Re number tends to infinity, the level of SGS he-
licity dissipation rate should approach the helicity injection
rate �=0.5, while, due to the finite Re number effect in the
data, the SGS helicity dissipation calculated from the DNS
data is only about 0.45 in the inertial range. Taking these
effects into account, the error introduced by replacing the

FIG. 5. The dependence of SGS energy dissipation rate on filter
size. Solid line: DNS data, line with squares: the Smagorinsky
model, line with deltas: the nonlocal helical model, and line with
gradients: the local helical model. lk���3 /��1/4 is the Kolmogorov
length scale.

FIG. 6. The dependence of SGS helicity dissipation rate on filter
size. Solid line: DNS data, line with squares: the Smagorinsky
model, line with deltas: the nonlocal helical model, and line with
gradients: the local helical model. The solid lines correspond to
models with coefficients calculated by assuming the �’s are one,
while the dashed line corresponds to DNS �’s. lk���3 /��1/4 is the
Kolmogorov length scale.
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model coefficients with their linearization appears to be
rather small in the inertial range.

B. A posteriori tests in isotropic turbulence

In this section, the helical models are applied to the LES
of isotropic steady and decaying turbulence and the results
are compared with DNS data obtained through additional
simulations. Also tested are the dynamic Smagorinsky model
and the dynamic mixed nonlinear model �for specific defini-
tions used in this latter model, see �30��. In the simulations,
the rotational form of the NS equation is solved by the pseu-
dospectral method in Fourier space in a �0,2��3 box. The
resolution of LES is 643. The reference DNS is done with
resolution 2563 for forced turbulence and 5123 for decaying
turbulence.

1. Isotropic steady turbulence

For the simulation of steady forced turbulence, the veloc-
ity field is initialized with Gaussian random numbers and is
then rescaled to match a prescribed �initial� energy spectrum
in the form of E0�k�=A�u0

2 /kp��k /kp�4exp�−2k2 /kp
2� where kp

and A are constants, kp characterizes the initial integral
length scale and A is chosen in such a way that the initial
turbulent kinetic energy is 3u0

2 /2. A statistically steady state
is achieved by injecting constant amounts of helicity and
energy into the flow field by the forcing term in the NS
equation. The force is given in Fourier space in the following
form:

f̂�k,t� = fu�t�û�k,t� + fo�t��̂�k,t� , �55�

in which fu and fo are updated at each time step to keep the
energy and helicity injection rate � and � constant. From the
definition of � and �:

� = �f iui� = � � f̂ i�k,t�ûi
*�k,t�� , �56�

� = 2�f i�i� = 2 � � f̂ i�k,t��̂i
*�k,t�� , �57�

we obtain two algebraic equations for fu and fo, from which
they are solved to be

fu =

� � ��̂i�̂i
*� −

1

2
� � ��̂iûi

*�

� �ûiûi
*� � ��̂i�̂i

*� − �� ��̂iûi
*��2 , �58�

fo =

1

2
� � �ûiûi

*� − � � ��̂iûi
*�

� �ûiûi
*� � ��̂i�̂i

*� − �� ��̂iûi
*��2 , �59�

where the summation is over the sphere �k��kf �2. In the
simulations, �=0.1 and �=0.3, so the helicity injection rate
is close to the maximal value �max=2kf�=0.4 �31�. The re-
sults of LES are averaged over about four eddy turn-over
time scales 
��2K� / �3���3.333 after the turbulence
reaches steady state, where K is the mean kinetic energy in
steady state, while those of DNS are averaged over about

three eddy turn-over time scales. The Reynolds number for
the DNS data is about 175.

Figure 7 shows the energy spectra calculated by the dif-
ferent models. As designed, the effect of the added helical
term in the local and nonlocal helical models on the energy
spectrum is negligible. Only small differences are observed
among the models, mainly at the high wave-number end. The
dynamic models display the widely observed trend in nonhe-
lical turbulence, that is, compared with nondynamic models,
they predict higher spectral level near the cutoff wave num-
ber and lower level at the middle range of wave number. The

FIG. 7. Energy spectra. Solid line without symbol: DNS; dashed
lines: Smagorinsky; and thin solid lines with symbols: the other
models. In �a� local helical model �right triangles� and nonlocal
helical �diamonds�, �b� Dyn-A �squares� and Dyn-B �deltas�, and �c�
dynamic Smagorinsky �gradients� and mixed nonlinear �left
triangles�.
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Dyn-B model is more dissipative than the Dyn-A model at
the high wave-number region. The results for the dynamic
Smagorinsky model and the dynamic mixed nonlinear model
are the same as those observed in nonhelical turbulence �30�.

Figure 8 shows the calculated helicity spectra. The spec-
trum calculated by the Smagorinsky model, as compared
with the DNS result, shows a trend similar to the energy
spectrum. All the models give close results at the middle part
of the wave-number space. Near the cutoff scale, the dy-
namic Smagorinsky and dynamic mixed nonlinear model
give the highest level and are closest to the DNS results. For
the nonlocal, local helical models and Dyn-A model, the
added helical term dissipates too much helicity, so that the
spectra are lower than the DNS results. The spectrum calcu-

lated by the Dyn-B model falls in between the above two
groups.

Shown in Fig. 9 are the dynamically calculated coeffi-
cients C1 and C2 for both the Dyn-A and Dyn-B models.
Because the helical term is proportional to the highly inter-

mittent quantity R̃ij, the coefficients display relatively strong
fluctuations around their means. Two observations about the
Dyn-A model can be made. First, the dynamically calculated
coefficient C2 is only slightly higher that the value calculated
from the Kolmogorov spectrum, which is about 0.0008 from
Eq. �25� for �=0.1, �=0.3, and �=� /32. Second, the value
of C1 is lower than the previously found value in the LES of
high Re number flow �30�, due to the effects of low Re
number and the helical term. It can also be seen that the
mean value of C2 for the Dyn-B model is nearly zero, show-
ing that the helical term in the Dyn-B model is negligible.

2. Decaying isotropic turbulence

For the simulation of decaying turbulence, the flow field
has to be initialized with controlled helicity. One way to do
this, as proposed in �13�, is to manipulate the real and imagi-
nary parts of the Fourier components of the velocity field.
Here we propose another method based on the helical wave
decomposition �22,31,32�. Assuming that h+�k� and h−�k�
are, respectively, the amplitude of the normalized positive
and negative helical waves, which constitute an orthonormal
base in the plane perpendicular to the wave vector k, the
Fourier component of the initial velocity field is prescribed
as

û�k� = B�a+h+�k� + a−h−�k���E0�k�/�4�k2��1/2, �60�

where E0�k� is defined in the previous section; a+ and a− are
independent Gaussian random numbers; and B is a scaling
parameter. The variance of a+ is fixed to be one, i.e.,
��a+�2�=1, but that of a− is determined by the magnitude of
the helicity we want to put into the flow field. Notice that the
helicity spectrum corresponding to the above velocity distri-
bution is �31�

FIG. 8. Helicity spectra. Lines and symbols are the same as in
Fig. 7.

FIG. 9. Time evolution of the dynamically calculated coeffi-
cients. Square: Dyn-A model; and delta: Dyn-B model.
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H�k� = kB2���a+�2� − ��a−�2��E0�k�

= kB2�1 − ��a−�2��E0�k� = kB2�E0�k� , �61�

where ��1− ��a−�2� is chosen to control the magnitude of
the initial helicity. For any �� �0,1�, ��a−�2�=1−�, giving
the variance of a− needed to generate the initial velocity field
according to Eq. �60�. The energy spectrum for given � is

E�k� =
1

2
B2���a+�2� + ��a−�2��E0�k� =

1

2
B2�2 − ��E0�k� ,

�62�

so B= �2/ �2−���1/2 rescales the energy spectrum to E0�k�.
Correspondingly the helicity spectrum becomes

H�k� =
�

2 − �
2kE0�k� . �63�

For given k and E0�k�, the helicity spectrum increases with �.
When �=1, H�k�=2kE0�k�, reaching the maximal spectral
distribution for given energy spectrum E0�k� �31�.

In all the simulations of decaying turbulence, � is fixed to
be one. In other words, the velocity field is always initialized
with maximal helicity. kp=3 and u0=0.4, so that initially the
integral length scale is estimated as l0=� /kp�1.047 and the
eddy turn-over time scale is 
0= l0 /u0�2.618. For LES, 15
realizations are generated for each model. The results are
averaged over the whole ensemble. Because in decaying tur-
bulence the helicity and energy dissipation rates are not
known a priori, the nonlocal helical model is not applicable.
Therefore it is not investigated. For the DNS, resolutions of
5123 are used.

The first parameter examined is the helicity decay rate.
According to the previous theoretical analysis, the Smagor-
insky model underpredicts the helicity dissipation rate, so the
helicity decay rate predicted by the Smagorinsky model may
be expected to be slower than the DNS value. Indeed, Fig. 10
shows slower decay for the Smagorinsky model than DNS,
verifying the theoretical prediction. The decay rates pre-
dicted by the local helical model, Dyn-B, and Dyn-A models
are successively closer to, albeit still lower than, the DNS
value. The dynamic Smagorinsky and mixed nonlinear mod-
els yield results close to the Dyn-A model. Overall, the dif-
ference is quite small.

The helicity spectra are compared in Fig. 11. Because
helicity is not positive definite, the helicity spectrum from
DNS shows relatively large statistical fluctuations �due to
machine time limitations, only one realization of helical
DNS is available. For this reason also only data up to 4
0 are
shown.�

Similar to the results in steady turbulence, the spectra
calculated with the Dyn-A model and local model are dissi-
pated more than those calculated with the Smagorinsky
model at the highest wave-number end, while the Dyn-B
model is less dissipative there. The local helical model pre-
dicts essentially the same spectra as the Smagorinsky model
does at low wave-number range, where the Dyn-A and
Dyn-B models predict faster decay. The differences between
the dynamic Smagorinsky or the mixed nonlinear model and
the Smagorinsky model are the same as those found for the
energy spectrum in the nonhelical case �30� �e.g., closer pre-
diction at the intermediate wave-number range, and the ab-
sence of pile-up at the cutoff wave-number in the spectrum
predicted by the mixed nonlinear model�.

FIG. 10. The decay of mean
helicity. Dashed line: DNS; and
solid lines: models. �a� Smagorin-
sky; �b� local helical; �c� Dyn-A;
�d� Dyn-B; �e� dynamic Smagor-
insky; and �f� mixed nonlinear.
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The fact that the helical model is more dissipative is con-
sistent with the requirement of increasing the helicity dissi-
pation rate according to the theoretical analysis based on the
Kolmogorov-type spectrum; but from the figure it is also
clear that the lower helicity decay rate predicted by the Sma-
gorinsky model as compared with DNS is mainly due to the
slow decay of helicity in the low wave-number modes. This
deficiency is not improved by adding the helical term. In-
stead, the dynamic models predict higher decay rate for the
helicity in the low wave-number region, as happened for
energy spectrum observed previously �30�. Therefore present
results suggest that it is mainly the dynamic procedure that
helps improve slightly the prediction of helicity spectrum
and helicity decay rate.

As shown with DNS data in �13�, the energy cascade is
suppressed by strong mean helicity in decaying helical tur-
bulence. Therefore when the helicity is overpredicted by the
Smagorinsky model as a result of the underestimation of
helicity dissipation, one might expect that the energy cascade
is suppressed excessively so that the energy decay rate is
lower than it should be. On the other hand, the helical mod-
els, which predict higher SGS helicity dissipation rate,
should predict higher energy decay rate than the Smagorin-

sky model. To test this conjecture numerically, we plot in
Fig. 12 the energy decay predicted by DNS and the helical
models as a function of time. The main observations are that
the decay rates predicted by the Smagorinsky and the local
helical models, which are essentially the same, are lower
than the DNS value, and that the Dyn-A and Dyn-B models
predict higher decay rates than the Smagorinsky model, giv-
ing closer result with DNS. However, comparing these re-
sults with the energy decay found in nonhelical turbulence
�30�, we can see that the difference between the Smagorinsky
model and the DNS data is actually not bigger than in the
nonhelical case. Therefore the Smagorinsky model has cap-
tured at least the major part of the suppressing effect of he-
licity on energy cascade.

Given the fact that the dynamic procedure already gives
improved energy decay rate in nonhelical turbulence �30�,
the improvement of the dynamic models observed here
might also be attributed to the improved prediction of energy,
rather than helicity, statistics. The reason why the theoretical
prediction is not observed may be that the theoretical argu-
ments used in Sec. II assumed a Kolmogorov-type spectrum,
while the actual spectrum calculated by the Smagorinsky
model does not follow exactly Kolmogorov scaling.

FIG. 11. The decay of the he-
licity spectrum. Line patterns are
the same as in Fig. 10. Along the
direction of the arrow, the times of
decay are, respectively, 2
0, 3
0,
and 4
0.
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The evolution of energy spectra in decaying turbulence
was also analyzed in the same fashion, and results �not
shown� led to similar conclusions. Also examined was the
case of rotating turbulence �with Rossby number down to
Ro=0.1�, in which the presence of helicity is known in gen-
eral to affect energy decay rate. However, the differences
between the various SGS models on the resolved statistics
were negligible, even in the presence of strong rotation.

IV. CONCLUSIONS

The SGS dissipation of helicity and energy produced by
the Smagorinsky model, the dynamic version of the Smago-
rinsky model, the mixed nonlinear model, and some pro-
posed helical models has been investigated. By assuming a
Kolmogorov spectrum, it is shown analytically that the Sma-
gorinsky model underestimates the helicity dissipation by
about 40%. This prediction is expected to hold asymptoti-
cally at very high Reynolds numbers under ideal conditions.
To formulate models in which helicity dissipation can be
prescribed directly, two two-term helical models are pro-
posed. These are motivated by the form of the SGS helicity
dissipation term in the equation of resolved helicity. The co-
efficients are determined either by simultaneous energy and
helicity balance or by dynamic procedures. When devising
the dynamic procedure, we also propose to use the Germano
identity in the form of SGS force, in an effort to comply with
the material frame indifferent requirement for the model co-

efficients. The nondynamic helical models are analyzed a
priori and all the models are applied to the simulation of
isotropic steady and decaying turbulence. It is shown that for
most of the helical models the added term contributes a sig-
nificant part to the helicity dissipation, while it does not
much affect the energy dissipation. The decay rate of helicity
in decaying helical turbulence is improved to some extent by
the helical models. However, the overall effect of the added
terms is small. In general, the dynamic models give better
results, mainly because of their ability to predict more accu-
rately the energy dissipation rates. In particular, the dynamic
Smagorinsky and the dynamic mixed nonlinear model,
which had in the past been proven to yield realistic energy
dissipation rates, also yield improved helicity spectra. It is
also found that the dynamic model derived from the Ger-
mano identity for SGS force is slightly more dissipative in
energy than the traditional dynamic model, and the helical
term is almost totally turned off by the dynamic procedure.

As a broad conclusion, we find that the model based on
global helicity dissipation requirement is not very different
from the standard dynamic Smagorinsky model, and current
models �e.g., mixed nonlinear model� are able to yield rea-
sonably good results.
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FIG. 12. The decay of mean
kinetic energy. Line patterns are
the same as in Fig. 10.
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